

MINING WASTE MANAGEMENT IN CHILE: EXPERIENCE, CHALLENGES AND OPPORTUNITIES

ARMANDO VALENZUELA JARA,

- Director, AL Prospecta Consultores, and EXPOMIN advisor, Chile
- avalenzuela@alprospecta.cl

WORKSHOP ON BEST PRACTICES ON MINING POLICIES AND TECHNOLOGIES

Thematic session 2 - Mining waste management and mine rehabilitation

BREY Building, European Commission 15-16 / 10 / 2015, Brussels, Belgium

AGENDA

- 1. Mining production in Chile
- 2. Environmental regulations
- 3. Waste generation from copper processing
- 4. Waste management and metals recovery
- 5. Final Remarks

1. Mining production (1/3)

Today, Chile is the largest producer of copper in the world and a globally significant supplier of Mo, Re, Ag, Au, and industrial minerals, like nitrate, lithium and iodine, among others.

2014 Production (*)

Main Metals & minerals	Volume	Global ranking	Global share
Copper (Mton)	5.8	10	31%
Molybdenum (kton)	48.8	3º	16%
Gold (ton)	46	18º	1.6%
Silver (ton)	1,572	5°	6.0%
Iron ore (Mton)	18.9	14º	0.6%
Nitrates (Mton)	0.7	1º	100%
lodine (kton)	19	1°	60%

^{(*) 50%} of rhenium world production, obtained as a by-product from roasted Mo concentrates

Note: by 2018, first TiO₂ production in Chile: 200 kt/y as concentrate (95% TiO₂)

2025

Potencial Volume (**)						
6.8						
96						
81						
3,067						
33						
3.0						
31						

(**) According to Cochilco`s forecast (2015): US\$ 77 billion with 42 projects

1. Mining production (2/3)

a. Growth in copperproduction from 1990to 2014

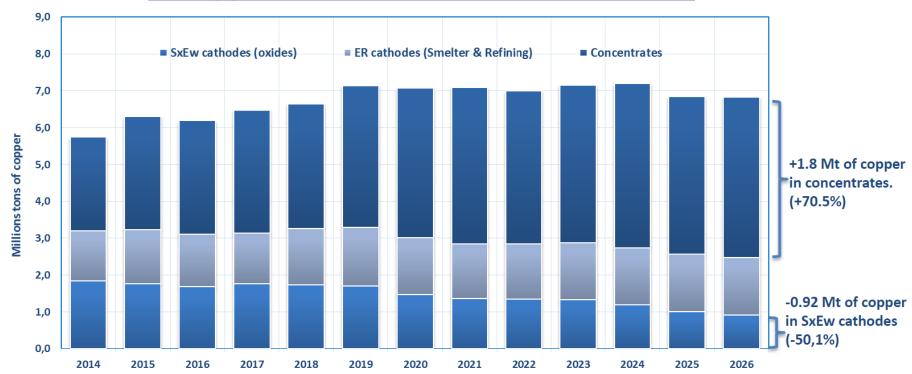
Final product	Production	(metric ton)	World share (%)	
Filial product	1990	2014	2014 (ranking)	
Mine (total)	1,588,400	5,750,000	31.1 (1)	
Concentrate	259,9	2,549,800	18.9 (1)	
Cathode SX-EW	122,1	1,844,000	48.0 (1)	
Cathode E-R	955,6	885,4	9.0 (3)	
Blister and other (*)	250,8	470,8	N.A.	

^(*) blister and fire refined; N.A.: not available

b. Main copper producers, 2014

Onenstien	Main Courses	Prod	uction
Operation	Main Owners	(kton)	%total
7 operations (*)	Codelco (100%)	1,841	32.0%
Escondida	BHP-Billiton (57.5%), Rio Tinto (30%)	1,165	20.3%
Collahuasi	Anglo American (44%), Glencore (44%)	470	8.1%
Los Bronces	Anglo American (50.1%), Codelco (24.5%)	437	7.6%
Los Pelambres	Antofagasta Minerals (60%), Japanese investors (40%)	405	7.0%
Centinela (**)	Antofagasta Minerals (70%), Japanese co.	278	4.5%
Pampa Norte (***)	BHP-Billiton (100%)	256	4,5%
El Abra	Freeport McMoRan (51%), Codelco (49%)	166	2.9%
Candelaria	Lundin Mining (100%)	135	1.7%
Zaldivar	Barrick (50%), Antofagasta Minerals (50%)	100	2.2%
Others	Over 20 medium size mines and small operations	492	9.7%
Total		5,745	100%

^(*) Chuquicamata, Radomiro Tomic, Ministro Hales, Gabriela Mistral, Salvador, Andina and El Teniente


^(**) El Tesoro and Esperanza mines

^(***) Cerro Colorado and Spence mines

1. Mining production (3/3)

c. Copper Production Forecast, 2014 - 2026

- By 2026: >90% of new Cu production will be in the form of concentrate
- Concentrate exports:
 - 2014: 2.55 Mton (65.3% of the total production)
 - 2026: 4.4 Mton (73.6% of the total production)

AGENDA

- 1. Mining production in Chile
- 2. Environmental regulations
- 3. Waste generation from copper processing
- 4. Waste management and metals recovery
- 5. Final Remarks

2. Enviromental regulations (1/3)

a) Regulations affecting mining operations and copper smelters

DS 148. Sanitary Regulation on D.S. 90: Discharges Handling of **Environmental** Law 20,551 of industrial wastes **Dangerous Wastes** Law 19,300 Mine Closure (*) into water 1991 2003 2012 1994 2000 2013 1999 2007 DS 165/99: As D.S. 248: DS 185/91. **Decontamination plans to reduce**

DS 185/91.
Min of Mining:
Quality Air
Standard for SO₂

and MP10

SO₂, MP and As emissions from smelters:

- Ventanas (1992)
- Chuquicamata (1993)
- Paipote (1995)
- Potrerillos (1998)
- · Caletones (1998)

DS 165/99: As emission standard for smelters D.S. 248: Tailing Management

D.S. 28: Air emission standard for smelters: As

andSO₂

(*) Including technical, safety and financial obligations for large, medium and small scale operations

Next environmental regulations?

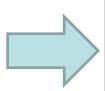
2. Environmental regulations (2/3)

b) SO₂ and As emissions from Cu smelters, the present standard, and future standard to be reached between 2016 and 2018

	Sulph	ur dioxide emi	ssions (t/y)	Arsenic emissions (t/y)		
Smelter	Present standard	Average 2007- 2011	New standard by 2018	Present standard	Data 2011	New standard by 2018
Chuquicamata	56,600	92,104	49,700	800	520	476
Caletones	230,000	118,642	47,680	360	250	130
Potrerillos	100,000	82,258	24,400	800	600	157
Altonorte	24,000	44,251	24,000	126	97	126
Ventanas	90,000	18,820	14,650	120	90	48
Chagres	14,400	13,437	13,950	90	3	35
Hernán Videla Lira	40,000	23,021	12,880	34	12	17
Ministro Hales (*)	-	-	548	-	-	1

Note (*): roasting plant starting operation by 2014.

- Investment to reach new standard (95% S capture): US\$ 2 billion, mainly from State's smelters: Codelco and ENAMI facilities
- In process: review quality standard for SO₂ by 2020


2. Environmental regulations (3/3)

c) Law 20,551: mine closure for mining and metallurgical operations

Main objectives:

- To protect life, health and safety of people and the environment.
- To mitigate the negative effects of the mining industry.
- To avoid "new" abandoned mining operations and plants.
- To ensure the physical and chemical stability of mining facilities (i.e. tailings dam)
- To establish a <u>financial guarantees</u> covering mine closure costs.
- To create a post-closure fund for monitoring closed mining operations

Main characteristics:

- To submit a mine closure plan to the National Geological Service
- Different requirements, according explotation or processing rate (10 kt/month)
- working plan and related activities based on risk assesment + economic evaluation
- Proposal of financial guarantees + payment schedule related to mine life

Result (to Dec 2014):

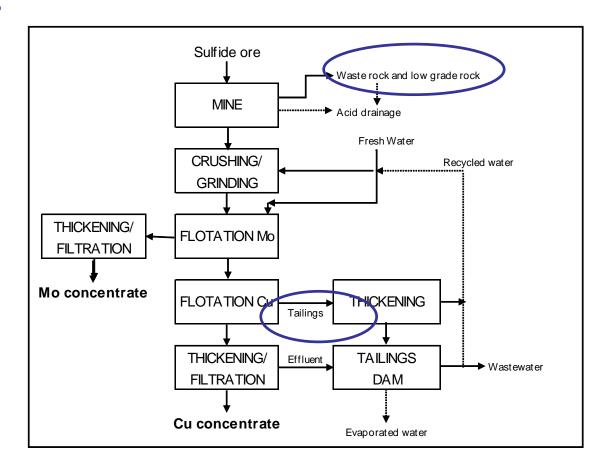
 134 plans were submitted with a total value of US\$ 12 billion

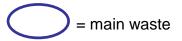
AGENDA

- 1. Mining production in Chile
- 2. Environmental regulations
- 3. Waste generation from copper processing
- 4. Waste management and metals recovery
- 5. Final Remarks

3. Waste generation (1/4)

a) Concentrator plants


- 15 large-size operations (> 50 kton/y Cu production)
- +10 operations of medium-size


Tailings generation (Mton/y):

• 2014: 511 (1.4 Mt/d)

• 2026: 1,078

3. Waste generation (2/4)

a) Concentrator plants: tailings dams

Туре	Total		Main regions - location
	N°	%	
Active	161	24.5%	Copiapó, Coquimbo, Valparaíso
No active	364	55.3%	Coquimbo, Copiapó, Valparaíso
Abandoned	94	14.3%	Coquimbo, Antofagasta, Copiapó
Without information	39	5.9%	Copiapó, Coquimbo
Total	658	100%	

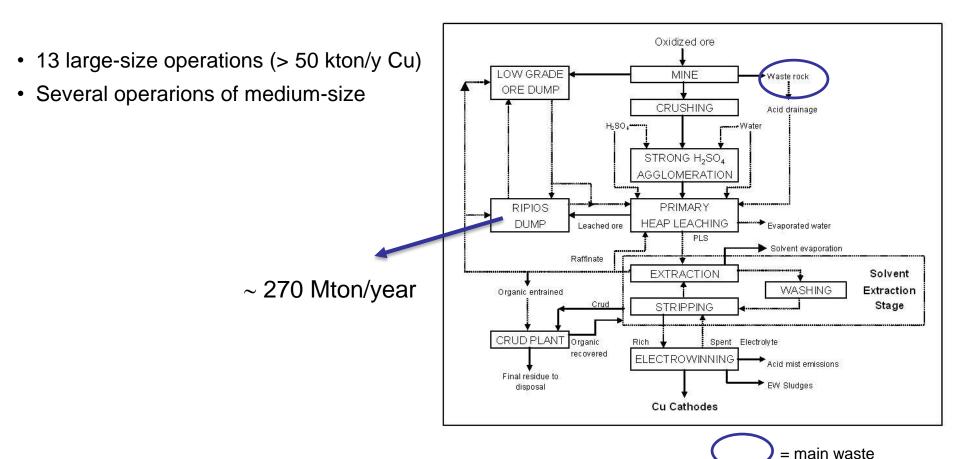
Source of tailings dam – metal processed:

• Copper: 50%

• Gold: 30%

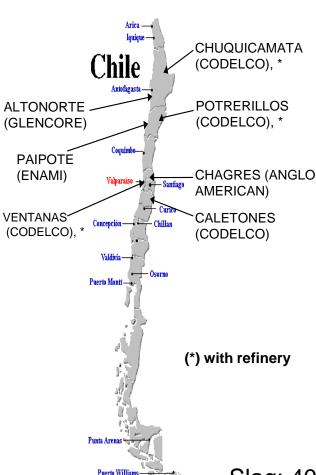
• Without info: 18%

• other: (*) 02%

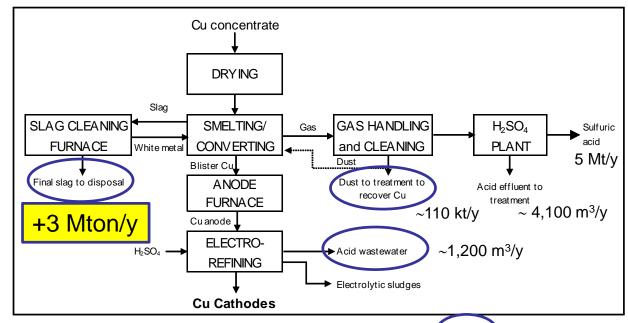

Additionally, over 400 abandoned processsing plants

(*) iron ore, molybdenum, zinc, silver, industrial minerals.

3. Waste generation (3/4)


b) Hydrometallurgical plants

3. Waste generation (4/4)


c) Smelters

- Smelters using Flash, Teniente or Noranda technology
- Blister production: 100 to 580 kton/y copper

= main waste

Slag: 40-50 Mt already disposed

AGENDA

- 1. Mining production in Chile
- 2. Environmental regulations
- 3. Waste generation from copper processing
- 4. Waste management and metals recovery
- 5. Final Remarks

(1/6)

Operations

Smelter flue dusts (2007):

- EcoMetales Limited (Codelco)
- · Cu in solution sent to SX-EW facilities

Cu flotation tailings (2008):

- CMP magnetite plant (CAP)
- · Iron ore concentrate

Acid drainage (1984):

- Underground mine El Teniente (Codelco)
- 3-4 kton/y Cu cathodes

Smelter flue dust (1982):

- Caletones smelter (Codelco)
- Cu in solution sent to SX-EW facilities

Cu flotation tailings (1992):

- Minera Valle Central (Amerigo Res.)
- Cu-Mo concentrate from fresh and old tailings

Mining waste (year startup):

- Plant's name owner
- Metal recovery or waste generation

Projects & R+D

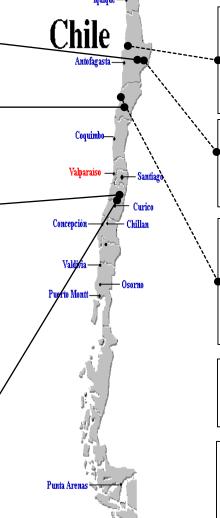
Anodic slimes (under construction):

- SpA Metals Recovery Plant (LS-Nikko Copper, 66% - Codelco, 34%)
- 4k/y processing plant to recover Cu, Au and Ag and PGM's (Pt, Pd, Rh), Te, Se, etc.

Roasting plant flue dusts (under study):

- Ministro Hales plant (Codelco) EcoMetales
- Waste generation: > 20 kt/y containing Cu, Ag, Bi and As

<u>Old flotation tailings – Chañaral beach</u> (feasibility study):


- Playa verde Project (Copper Bay) to process 5 Mt/y during 10 years
- Concentrate (Cu, Au) and Cu cathodes

Cu slags:

- · Several smelters testing in road construction
- · Some R+D to recover metals

Flotation tailings:

- Several owners
- Lab testing to recover some rare earths, Ge, Ga, Te, Se, etc.

Source: AL Prospecta's analysis using data from mining companies

a) Cu and Mo concentrate from tailings

(2/6)

(3/6)

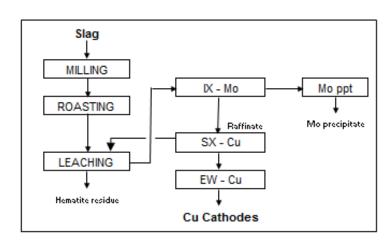
b) Iron ore from copper flotation tailings

Typical chemical analysis for a tailings generated from a copper flotation process.

% Solid	Fe Total (%)	Fe Mag (%)	P (%)	S (%)	SiO ₂ (%)	CaO (%)	MgO (%)	Al ₂ O ₃ (%)
30	18 -22	10 - 13	0.2 - 0.4	1 - 4	40	3.5 - 4.0	3.5	8 - 9

CMP magnetite plant (iron ore operator)

- Since 2008, this plant treats tailings (10% mag Fe and 1% S) from a flotation plant (a copper operation) located in Atacama region.
- About US\$ 70 in investment to produce about 3.5 Mton/y of iron ore concentrate (> 68% Fe)
- Process includes: magnetic concentration (Rougher), Milling, magnetic concentration (Cleaner),
 Flotation (Inverse pneumatic).
 - Challenges: access to port (iron ore exports), high S level in copper tailings


(4/6)

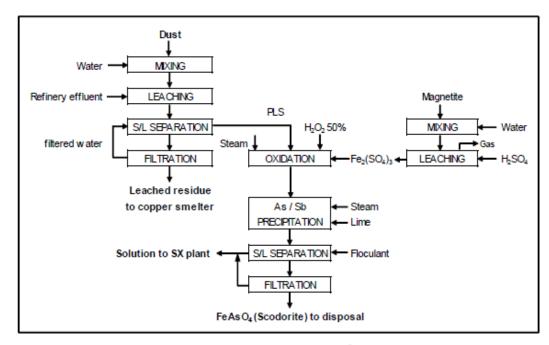
c) Copper slag: research to recover value metals

Chemical analysis: 30-40% Fe, 35-40% Silica, 10% calcium oxide, 1% Cu,
 0.3% Mo, as well as Zn and precious metals, among others)

Research and flowsheet proposals:

- Target: recovery of Cu, Mo, Fe.
- Hydro and pyrometallurgical routes have been proposed, including a roasting-leaching, IX (Mo) and SX-EW flowsheet.
- However, no pilot plant yet, and more research is required to solve remaining challenges, such as proper separation of Mo-Fe, and high acid consumption
 - Now, testing slag as material for road construction.

Source: Propuesta recuperación Mo desde escorias, Proyecto FONDEF D02 I 1159, Univ. De Concepción, Chile, 2006



(5/6)

d) Treatment of smelter flue dusts

 Since 2007, EcoMetales treats smelter flue dusts, mainly generated from Codelco smelters:

Cu	As	S%	Bi	Cd	Pb	Sb	Others
3-30%	1-17%	0.8-13%	0.1-0.9%	0.2-20%	0.5-12%	0.1-1.5%	Ge, Mo, Ag, etc.

EcoMetales plant at Codelco Norte's facilities, Chile

Main achievements:

- √ >350 kton of dusts and >500,000 m³ of refinery effluent
- √ >67 kton of Cu recovery, contained in a PLS solution
- ✓ Up to 10 kt/y of As is precipitated and disposed of as Scodorite (crystalline ferric arsenate).
- ✓ Precipitation also includes Sb and Cd, meeting D.S. 148 requirements.

New focus: Recovery of Mo, Re, Ge, Pb, Ag, and other metals from PLS and leached residue.

(6/6)

e) Chemical characterization of old tailings (*)

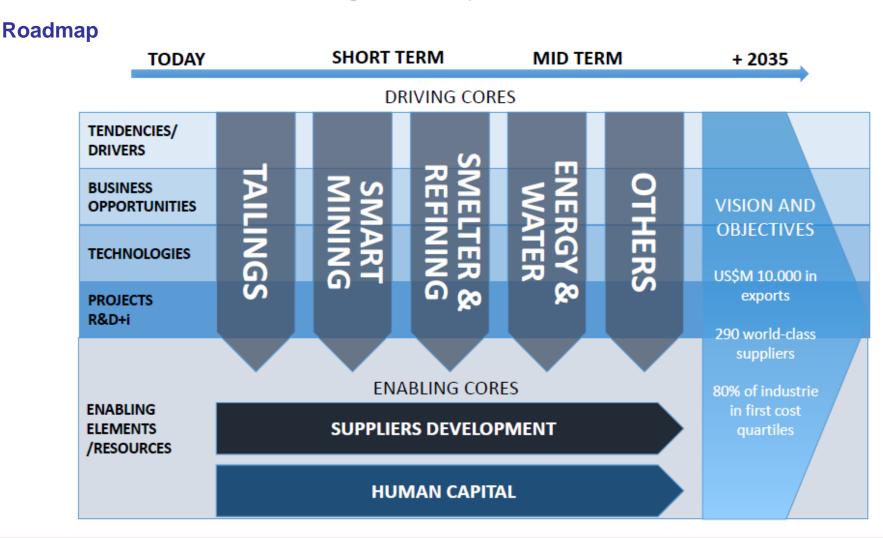
Chemical element	Minimum [gr/ton]	Maximum [gr/ton]	
Mg	800	18,880	
Ti	107	4,000	
V	27.5	206	
Mn	113	37,660	
Fe	10.100	183,450	
Со	6.0	199	
Cu	0.2	19,300	
Мо	8.5	200	
Zn	0.3	16,290	
Ga	2.1	35	
Ge	1.0	9.5	
Se	0.6	2,202	
Sr	72.4	1,138	
Sb	2.1	581	
Ва	1.0	70,576	
W	5.0	52	
Te	6.4	8.6	

• Lab testing to recover some rare earths, Ge, Ga, Te, Se, Sr, V, etc.


(*) from medium copper mining companies sites

AGENDA

- 1. Mining production in Chile
- 2. Environmental regulations
- 3. Waste generation from copper processing
- 4. Metal recovery from mining waste
- 5. Final Remarks



5. Final remarks

a) What is Chile doing to stay competitive?

Source: Chilean Copper Commission

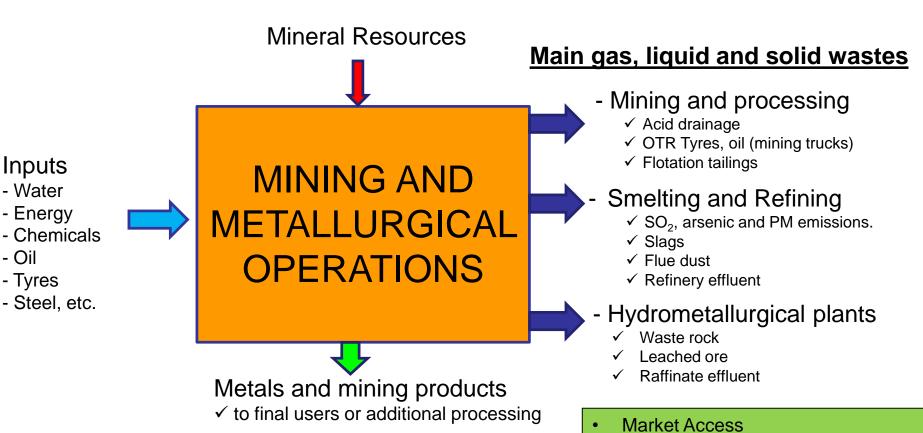
5. Final remarks

Inputs

- Water

- Energy

- Oil


- Tyres

International and local regulations

waste management and treatment Technologies for metals recovery

b) Mining Waste: New source of metals and materials

CONGRESS EXPOMIN 2016

April 2016, Santiago – Chile, <u>www.congreso.expomin.cl</u>

Monday 25	Tuesday 26	Wednesday 27	Thursday 28	Friday 29
Opening Ceremoy EXPOMIN Congress:	2nd Seminar: "Mining Procurement "	4th Workshop "Technological Development in Mining" - Codelco	2nd Seminar: "Smelting - Refining"	2nd Round Table: "Labor and Human
"CEO Summit" Round Table	3rd Seminar: "Sustainable Trends"	4th Workshop: "Metal Recovery from Mining Waste" (full-day)	Seminar: "Challenges in Mining Exploration"	Resources Challenges in Mining"
VII Seminar: Mining Competitiveness	2nd Seminar: "Sea Water for Mining"	Seminar: "Productivity in	2nd Seminar: "Energy	
in the Americas (hosted by	Seminar: "Public Policy in the Mining Sector"	Mining"	Challenges in Mining"	
National Society of Mining)	(hosted by Ministry of Mining)		1° seminar: Environmental issues in mining	

Organiza y Produce:

AL PROSPECTA Consultores: Technical coordination

5. Final remarks

4th INTERNATIONAL WORKSHOP "METAL RECOVERY FROM MINING WASTE"

Preliminary program:

- Regulatory and market trends for waste management:
 - ✓ European Commission, China, Australia and Chile
- Impurities: Waste or resources?:
 - ✓ Market trends
 - ✓ Management, neutralization, disposal or production
- Industrial Practices (projects and operations):
 - ✓ Chile, South Korea, Australia, Canada

Looking forward for proposals!!!!

Chairman

PEDRO REYES

General Manager

Chagres Division

Anglo American, Chile

Technical Committee

- Anglo American
- BASF
- EcoMetales Limited
- ENAMI
- 5NPlus
- UNAB
- EXPOMIN

Many thanks for your attention!!!

MINING WASTE MANAGEMENT IN CHILE: EXPERIENCE, CHALLENGES AND OPPORTUNITIES

ARMANDO VALENZUELA JARA,

- Director, AL Prospecta Consultores, and EXPOMIN advisor, Chile
- avalenzuela@alprospecta.cl

WORKSHOP ON BEST PRACTICES ON MINING POLICIES AND TECHNOLOGIES

Thematic session 2 - Mining waste management and mine rehabilitation

BREY Building, European Commission 15-16 / 10 / 2015, Brussels, Belgium